524Uploads
220k+Views
119k+Downloads
Design, engineering and technology
System analysis and design with the BBC micro:bit
What security systems’ features would deter a burglar from breaking into a home?
For this introductory activity, students will analyse the needs of a home security system so that they can design a product that is tailored to meet a specific set of requirements. It is part of a unit of learning that tasks learners with researching, programming and developing a working door access and alarm system using the BBC micro:bit.
This is one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3. It is part of our series of resources designed to support the use of the BBC micro:bit in secondary school design & technology (DT), computing and engineering lessons. Following this lesson, students can move on to design a home security system with the BBC micro:bit.
Activity: Researching and designing a home security system for the BBC micro:bit
In this activity, learners will look at the requirements for a good home security system from the perspective of a burglar. They’ll do this by watching a home security video featuring home safety tips from an ex-burglar so that they can understand what deters burglars from breaking into a property.
They will then use this information to develop at least four design criteria for the alarm system (such as inputs, outputs, programmable features, etc).
The engineering context
System analysis is used by engineers in software development, product design and other forms of systems engineering such as mechanical and electrical engineering. It’s a key part of understanding users’ needs so that products can be developed and improved through technical or scientific innovations.
A home security system will give students a useful context for learning about programmable components and embedded intelligence in products. It is also an ideal vehicle for using the BBC micro:bit in the classroom and developing the programming skills of learners.
Suggested learning outcomes
By the end of this lesson students will be able to identify and analyse the needs of a home security system, and then be able to determine key design criteria for developing the system.
Download our activity sheet (classroom lesson plan, student handout and PowerPoint presentation) resources for free!
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download (including videos!), and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
Please do share your highlights with us @IETeducation.
Human robotic arm design
Exploring the movement of a human arm for robotics design
This is an engaging starter activity in which students examine how human arms move. Learners will also discover how this movement can be replicated with a mechanical arm using a smart material. Students can then subsequently use this information to support the design of a robot arm.
This lesson can be followed by 3D modelling, which looks at designing and modelling a 3D robot arm and build a robot arm, which looks at how to make a robot arm with carboard.
It’s one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3, supporting the teaching in science (specifically biology), engineering and design & technology (D&T).
Activity: Exploring the movement of a human arm for robotics design
By examining the movement of their own arms, students will learn how robot arms might be designed and how smart materials can play a role.
Students will first bend their arms and be asked to monitor and describe the mechanics involved (muscles, joints, etc.). They will then consider how this natural bending motion can inspire the design of robot arms. Learns will be introduced to shape memory alloy (SMA) springs, which can be deformed or stretched and then revert back to their original shape when heated (this can be achieved using an electrical current).
Finally, students will be tasked with explaining how SMAs could be used to create movement in a robot arm.
Download our activity overview for a detailed lesson plan on the movement of a human arm.
The engineering context
Robot arms are an example of a programmable system. They are used in a wide variety of industrial applications, ranging from assembling cars to spray-painting products. They’re also used in more dangerous applications for humans such as bomb disposal and repairing space craft as they orbit the earth.
Suggested learning outcomes
Students will learn that a human arm moves due to the contraction of muscles, and they’ll understand that a robot arm can also use contraction or rotation to achieve movement. Finally, they’ll learn that shape memory alloys can revert to a previous shape when heated.
Download our activity sheet and related teaching resources for free!
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
Please do share your highlights with us @IETeducation.
What is a program?
Understand the importance of clear instructions when developing a program
In this starter activity, students are introduced to what is meant by a program through our fun maze route activity.
For the purposes of this activity a program is a set of step-by-step instructions that must be followed. Learners will therefore be asked to create a set of instructions that will solve a problem.
This is one of a set of resources developed to aid the class teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within design and technology (DT).
Activity: Understanding the importance of clear instructions when developing a program
In this activity students will complete a practical activity that will help them to understand what programme is.
Learners will get into pairs and, with one person having to navigate their (blindfolded) partner through a simple maze by giving them verbal instructions.
After this activity, there will be a class discussion on the importance of clear and concise instructions. Students will then reflect on what a programmable system is (i.e., a set of instructions) and discuss how this links to the activity that they’ve just completed.
Download our activity overview for an introductory lesson on programmes for free!
The engineering context
Programming is an essential skill in the 21st century world. From mobile phones and tablet computers to large passenger aircrafts, our everyday lives are shaped by systems that have been programmed. These systems keep us safe, get us to work/school or allow us to communicate with our friends and family.
Suggested learning outcomes
By the end of this lesson students will learn that a program is simply a set of step-by-step instructions. They will also understand the importance clear instructions when developing a program.
Download our activity sheet and other teaching resources
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your class’s and your schools’ needs.
You can download our classroom lesson plan for free!
Please do share your highlights with us @IETeducation
Flying by numbers with the lift equation
In this lesson, learners will apply the lift equation to carry out a real-world aircraft design activity.
This will support their understanding of:
manipulating the subject of equations;
using equations;
interpreting data presented in tables and graphs.
The resource is designed to support teaching of key engineering concepts at both key stage 3 and key stage 4, including the GCSE in Engineering. This resource focuses on the application of maths in engineering.
This could be used as a one-off main lesson activity, as an introductory lesson to a wider unit of work focussing on aerodynamics or as part of a scheme on aircraft design using all of the resources developed in association with Arconic.
Activity: Writing flowchart programs to meet a given design brief
Students will firstly view our Flying by Numbers presentation to make sure that they understand the concept of lift and the lift equation. Using the information from within this presentation, they will change the subject of the formula to make wing area and velocity the focus, and then interpreting data using the tables and graphs that have been provided.
Download our activity overview and presentation for a detailed lesson plan on how to write a flowchart program to meet a given design brief.
What is the lift equation?
The lift formula is as follows:
L = d x v2 x s x CL / 2
Where:
L = lift; for level flight this equals the weight of the aircraft
d = density of the air. This changes with altitude – the higher you get, the ‘thinner’ (less dense) the air is
v = velocity of the aircraft
s = wing area of the aircraft
CL = coefficient of lift. This is read from a graph
Wing area:
s = 2 L / (d x v2 x CL)
Velocity:
v = √(2L / (d x s x CL ))
The engineering context
This lift equation is used by aerospace designers to determine the necessary characteristics of an aircraft so that it can fly.
Suggested learning outcomes
This lesson will teach students how to manipulate the subject of a formula. They’ll be able to use a formula and interpret data in tables and graphs.
Download our activity sheet and related teaching resources
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
Please do share your highlights with us @IETeducation.
Design a sustainable aircraft
Understand sustainability issues in engineering and how these are applied when designing a product
The resources is designed to support teaching of key engineering concepts at both KS3 and KS4, including the new GCSE in Engineering. This resource focuses on designing a sustainably powered aircraft for the future.
In this activity, learners will design a sustainably powered aircraft of the future. They will learn about the alternatives to using petrochemicals to power aircrafts. It will build understanding of sustainability issues in engineering and how these are applied when designing a product. This activity will also encourage students to get creative as they design a sustainable, but aesthetically pleasing aircraft.
This could be used as a one-off main lesson activity, as part of a wider unit of work focusing on sources of energy and sustainability issues in engineering or as part of a scheme on aircraft design using the resources developed in association with Arconic.
It is intended that learners complete this activity as individuals.
Some prior understanding of sustainability issues and energy generation methods may be advantageous.
Tools/resources required
Projector/Whiteboard
Basic drawing equipment
CAD software (if producing final design using CAD)
The engineering context
Sustainable design and the use of finite and non-finite resources is required learning as part of both the new Design and Technology and Engineering 9-1 GCSE courses.
The knowledge gained can also be used when selecting sources of energy for future product and system designs.
Suggested learning outcomes
By the end of this activity students will know that oil is a non-renewable, finite resource, they will be able to understand and apply sustainable alternatives to petrochemicals for powering aircraft and they will be able to communicate design ideas using sketches, notes and annotations.
Download the activity sheets for free!
All activity sheets, worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Flood prevention strategies
Program a prototype system to alert homeowners flooding risks
The flood prevention strategies activity tasks participants to program a prototype system to alert homeowners flooding risks.
Flooding is becoming increasingly common in parts of the United Kingdom and causes a lot of damage to peoples’ homes. The sooner a potential flood can be detected, the more time homeowners have to prepare and to save their property.
This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons. Damage caused by flooding can have widespread effects on people’s lives, homes, businesses, and agriculture. Authorities aim to provide adequate warnings when the risk of flooding is likely, however this can be challenging.
Activity info, teachers’ notes and curriculum links
In this activity, learners will debate the social impact of flooding and how design and technology could provide solutions to this. They should think about how programmable systems could be used to help homeowners and the authorities respond better and provide earlier and more effective warnings that flooding is likely to occur. They will then develop a working flood warning system using the BBC micro:bit.
Please do share your classroom learning highlights with us @IETeducation
Tools/resources required
Projector/Whiteboard
To watch videos the ‘flood warning system’ and ‘flood engineers’ videos, please visit the IET Education website.
Integrating the bag alarm system
Investigate and apply methods to attach the bag alarm device to a piece of clothing
This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons.
Schools are busy environments and it is easy for learner’s bags to be left unattended, taken by mistake or even stolen. Alarm systems using embedded electronics and programmable components can be developed to protect the property of learners during the school day.
In this unit of learning, learners will research, program and develop a working school bag alarm system using the BBC micro:bit.
Activity info, teachers’ notes and curriculum links
In this activity, learners will design a fully integrated product. They will investigate and apply methods to attach their device to a piece of clothing.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
Download the free activity sheet!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation
Design a Coronation throne
Design a throne for use by the new King which includes modern technologies
During the coronation King Charles will sit on the throne. This is a ceremonial chair that is used by a monarch or ruler. Historically thrones have been very ornate, to emphasize the power of the person sitting in them. However, most thrones were produced before a lot of modern technologies were invented.
This is one of a series of resources designed to allow learners to use the theme of the coronation of King Charles III to develop their knowledge and skills in Design & Technology. This resource focusses on the design of a coronation throne for the new King which incorporates modern technologies.
The teacher will first explain that learners are going to design a coronation throne for the new King that incorporates modern technologies. Discuss the design brief and design criteria with the learners to make sure that students understand.
This activity can be simplified (particularly for less able students) by specifying the technologies to be included into the throne, or by providing a feint template of a throne or chair that learners can draw over to create their design.
Use the handout for learners to sketch their ideas for their new throne and make sure they annotate their design to ensure it meets the design criteria.
As an extension students could incorporate multiple technologies into the design or consider other potential uses of the throne that they have designed.
This activity is designed to fill one whole lesson and should take between 40-70 minutes to complete.
Tools/resources required
Projector/whiteboard
Sketching equipment
A4/A3 paper
The engineering context
As new technologies emerge engineers investigate how the technologies can be adapted and incorporated into existing products. This can allow products to function in a different way or to achieve different uses.
Suggested learning outcomes
By the end of this free resource students will be able to communicate design ideas using sketches, notes and annotations in order to design a coronation throne that incorporates modern technologies.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation.
Marine engineering: How to build a small sail boat
Discover marine engineering for kids and learn how to make a model of a sail boat out of craft sticks
This marine engineering activity for kids will teach students how to make a model of a sailboat out of craft sticks. Students will learn facts about the United Kingdom’s rich history in the field of marine engineering. This includes building sailing ships like the HMS Victory, commanded by Admiral Nelson at the Battle of Trafalgar. Resources for teachers and activity sheets are provided to help students further their engineering abilities.
Activity info, teachers’ notes and curriculum links
In this activity learners use of the theme of significant turning points in British history, specifically their achievements in marine engineering, to make a model of a sail boat from craft sticks. They will then test their model to see if it floats.
All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your learning highlights and final creations with us on social media @IETeducation or send them via email to IETEducation@theiet.org to be featured in our online gallery.
Downloadable content
How to build a small sail boat activity
How to build a small sail boat presentation
Tools/resources required
PVA glue
Glue spreader
Craft sticks
Highlighter pens or paints
Material for the sail e.g. paper or card
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales.
Chinese zodiac animal wheel
Make a Chinese zodiac animal wheel to learn about cutting and assembling a simple graphic product.
In this activity learners will learn about cutting and assembling a simple graphic product. Learners will use a template to cut out the circle templates for the Chinese zodiac animal wheel and also learn about the twelve zodiac animals.
In the Chinese zodiac, each year is represented by an animal with a different personality. Why not find out more about this tradition and a Chinese zodiac animal wheel from a template?
Download the activity sheets for free!
All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs.
Tools/resources required
Thin card
Scissors
Pencils
Sticky tack
Paper fasteners
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales.
And please do share your learning highlights and final creations with us on social media @IETeducation
Learning more about programmable systems
Students discuss what they do and don’t know about programmable systems
This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons.
Some people enjoy taking part in quizzes in their spare time. Keeping an accurate score of points gained by each team, or player, is important when deciding who the overall winner is. Programmable counter systems can be used to do this quickly and easily, and reduce the likelihood of human error.
In this unit of learning, learners will use the BBC micro:bit to develop a programmable counter that can be used to keep score during a quiz.
Activity info, teachers’ notes and curriculum links
In this activity, learners will self-assess and plan how to extend their current knowledge of programmable systems.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
Download the activity sheets for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation
Golden rules for programmable systems
Create five rules for learning about programmable systems
This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons.
Hundreds of people are killed in accidents on roads in the United Kingdom every year. When schools are situated close to roads there is particular danger to children crossing them. A good, well programmed pedestrian control system can minimise risk and enable people to cross the road safely.
In this unit of learning, learners will use the BBC micro:bit to develop a prototype for a pedestrian crossing for a local secondary school.
Activity info, teachers’ notes and curriculum links
In this activity, learners will create five ‘golden rules’ for others learning about the topic of programmable systems.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
Download the activity sheets for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation
Design a home energy system
Use the BBC micro:bit to develop a prototype for a home energy monitoring system that will inform people of how long they leave their lights and/or heating on during the day.
In this activity, learners will develop their energy monitoring system using the BBC micro:bit.
This is an ideal exercise for learners to develop programming skills, make use of programmable components and embed intelligence into a product design.
This is a versatile activity that can be attempted by learners as individuals, in pairs or in small groups.
If learners have not seen or used a block systems diagram before it might be necessary to describe this in more detail (i.e., what is meant by input, process, output etc.)
This activity will take approximately 60 – 120 minutes depending on ability and prior experience of learners.
Tools/resources required
Projector/Whiteboard
BBC micro:bit system and online programming software
Internet (to access programming software)
Suitable input devices
Crocodile clips or other wiring options (to attach input and/or output devices)
What is the BBC micro:bit?
The BBC micro:bit is a great way to get kids interested in computing. It is a small, programmable computer that can be used to create a wide variety of activities and projects. It is a powerful teaching and learning tool that helps learners develop their own systems and learn the basics of coding. It is an ideal tool for introducing children to programming concepts in a fun and engaging way.
When writing the program, those who have not done programming before may benefit from writing, experimenting with and downloading the example program shown on the Teacher PowerPoint. They can use this as a base for their own program.
The engineering context
Home energy usage is an ideal topic for teaching about programmable components and embedded intelligence in products. These are key parts of the 2014 programme of study for Design and Technology at KS3.
It is also an ideal vehicle for using the BBC micro:bit in the classroom and developing the programming skills of learners.
Download the free Design a home energy system activity sheet!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Sketch it out
Learners to demonstrate existing knowledge of sustainability issues in Design and Technology
This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons.
Reducing energy usage in the home saves money, increases energy security and reduces the need to burn unsustainable fossil fuels. The first step in doing this is monitoring how much energy is used each day.
In this unit of learning, learners will use the BBC micro:bit to develop a prototype for a home energy usage monitoring system that will inform people how long they leave their lights and/or heating on during the day.
Activity info, teachers’ notes and curriculum links
In this activity, learners will demonstrate their existing knowledge of sustainability issues in Design and Technology.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
Download the activity sheets for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation
Design the casing for a flood warning system
Draw and annotate casing that meets a design brief and design criteria
This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons.
Flooding is becoming increasingly common in parts of the United Kingdom and causes a lot of damage to peoples’ homes. The sooner a potential flood can be detected, the more time homeowners have to prepare and to save their property.
In this unit of learning, learners will identify the design problems presented by flooding. They will then develop a working flood warning system using the BBC micro:bit.
Activity info, teachers’ notes and curriculum links
In this activity, learners will design a suitable casing for their BBC micro:bit flood warning system.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
Download the activity sheets for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation
Modifying the security system
Improve and develop your programmable system
This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons.
Home security is increasingly important as homeowners look to ensure that their properties and possessions are protected from potential burglary. Alarm systems are being developed with increasingly complex embedded electronics and programmable components.
In this unit of learning, learners will research, program and develop a working door access and alarm system using the BBC micro:bit.
Activity info, teachers’ notes and curriculum links
In this activity, learners will improve and further develop their programmable system using the BBC micro:bit.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
Download the activity sheets for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation
What are the pros and cons of using public transport?
Analyse current transport options and compile a list of criteria that future methods of transport should fulfil
In the UK around 75% of people use their car for their daily commute. However, with congestion and pollution from increased traffic, why aren’t more people using community transport?
This is one of a set of free STEM resources for KS3. Can your students think about current methods of community transport and consider the advantages and disadvantages of each?
Activity:
In this activity, students are asked to think about current methods of community transport and the associated pros and cons. Their ideas will then be used to compile a class list of criteria that future methods of community transport should fulfil.
Slide 2 of the presentation below shows an image of traffic congestion. Learners should discuss what the image conveys and how they feel about this. Take time to discuss why many people choose to drive rather than use community transport.
One possible solution to reduce the amount of traffic on the road is for more people to use community transport. What do students think about this solution?
Slide 3 of the presentation shows a range of current community transport methods. Students will work in pairs or small groups to discuss the pros and cons of each method.
You may like to go through one type of transport as a class and then ask the students to go through the remaining individually or in groups.
This feedback can be used to compile a class list of criteria that community transport needs to fulfil in the future e.g. sustainable (materials used to make the transport, the infrastructure needed as well as the fuel used), low pollution, use of renewables, low energy consumption (high energy efficiency), cheap, fast, good networks and frequent service.
This is a quick and simple activity that will take approximately 25 minutes to complete.
Suggested learning outcomes
By the end of this activity students will be able to identify the pros and cons of different types of community transport and they will be able to compile a list of criteria for future community transport.
Download the activity sheets for free!
All activity sheets, worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Acoustic engineering 2
Students design an ideal set of headphones
This is an engaging exercise aimed at secondary school students. This resource will allow learners to understand ergonomics and aesthetics in an authentic context and apply their findings in a creative and challenging way.
Students are given the opportunity to think about acoustic engineering and to analyse earphones currently on the market in a structured, detailed, and creative way. They are then encouraged to investigate the potential development of the product.
Download our free activity sheet below to view a case study of a pair of Bang & Olufsen earphones. Discuss as a class the styling and marketing of this product. The CAFEQUE (Cost, Aesthetics, Function, Ergonomics, Quality, User, Environment) principles can then be used to analyse them.
Using what they have learnt from this product, ask the students to analyse their own headphones/earphones and to produce a critique of them. They should focus on which areas they would develop and why.
To support the students, use the ‘Acoustic Engineering’ presentation for assessment criteria that stipulate what is expected in this detailed design-development sheet. These criteria can be developed with the students, using the example as a starting place.
Tools/resources required
Projector/whiteboard
A range of earphones and headphones (these could be provided by the students or collected by the department over time)
Suggested learning outcomes
By the end of this resource students will understand how to analyse a product. They will also be able to identify areas for development when analysing a product and they will be able to present their design considerations when deciding which areas and features to develop.
Download the activity sheets for free!
Also available Acoustic Engineering 1
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation.
Magnetic maze STEM challenge
Making a maze game from a bottle and a magnet
Learners will draw a maze layout on a plastic bottle and use a magnet to guide objects, such as a 1p coin, around the maze. This is a fun STEM challenge that will teach students about how magnets attract certain materials and will show them how to apply this knowledge in an engaging and practical way.
This resource could be used as a one-off activity or as part of a wider unit of work focussing on magnets and magnetism. It can also be used in conjunction with other IET Education resources, developed alongside the School of Engineering at Cardiff University.
Activity: Magnetic maze STEM challenge
This is one of a set of resources developed to support the teaching of the primary national curriculum. They are designed to support the delivery of key topics within science and design and technology. This resource focuses on developing understanding of magnetic materials by producing a maze game.
This activity could be completed as individuals or in small groups depending on the equipment that is available.
As an optional extension students could replace the coin with a ball bearing, a paper clip, a plastic coin and a small piece of wood. Which ones work well and which do not?
Students could also draw different maze layouts and use different sized bottles to create a range of puzzle products! Alternatively, students could compete with their friends to see who can complete the maze the fastest by timing themselves with stopwatches.
Tools/resources required
Pre-made exemplar
Magnets
1 pence coins (post 1992)
Plastic drinks bottles
Paper clips (for extension activity)
Ball bearings (for extension activity)
Plastic coins (for extension activity)
Small pieces of wood (for extension activity)
Different coloured marker pens
Stopwatches (for extension activity)
The engineering context
Engineers need to know the properties of magnets, which materials are magnetic and which materials are non-magnetic. This knowledge could be used when identifying and creating potential solutions to future engineering problems.
Suggested learning outcomes
By the end of this exercise students will have an understanding of what makes a material magnetic, they will be able to give examples of magnetic and non-magnetic materials and they will be able to make a maze game using a bottle and a magnet.
Download the activity sheets for free!
All activity sheets, worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Engineering all around us poster
Primary classroom poster giving a closer look at some of the applications of engineering in our everyday lives.
Download the single poster or order a full set of posters for free from the IET Education website.